Emotional Yoga: The importance of emotional flexibility for emotional well-being

Tom Hollenstein

Whether you are frequently wearing Lulu Lemon gear or not, it is difficult to miss the assurgency of yoga as a popular fitness activity. Taking the emphasis away from measurement-based exercise, like marathon running or bench presses, yoga is first and foremost about flexibility. Breathe. Stretch. Relax. Repeat.

In a similar way, one branch of emotion research over the past decade has begun to show the benefits of emotional flexibility.

In the most general sense, flexibility requires change in response to an event. With objects, as with bodies, this is often reflected in bending or changing shape somehow in order to accommodate shifting conditions without losing integrity. The opposite, then, is rigidity, where the object or body resists and retains its pre-existing shape. At its core, the concept of flexibility/rigidity is all about adaptation to local conditions in the environment.

With emotional flexibility, the same distinctions apply.

From moment-to-moment, emotions ebb and flow in a constant stream from one state to the next. A simple ritual of reading the newspaper can create a sequence of anger at a politician, sadness about the passing of a favorite celebrity, and a chuckle from the cartoon on page 12. Interacting with other people also punctuates that ebb and flow through complaints, joking, or interest.

flexible-emotions-Google-SearchA group of researchers led by Peter Kuppens and Peter Koval have examined this ebb and flow as emotional inertia, or the tendency to remain in an emotional state, even when conditions are changing (rigidity). To measure inertia, they use a type of correlation called an autocorrelation, which refers to the degree of correlation between a first moment (let’s call it time 1) with the next moment (let’s call it time 2) and so on. Higher autocorrelations of emotional states means that a person’s emotions are similar across multiple instances and that they are not changing very much. This indicates greater rigidity. Imagine being stuck in an angry mood all day and not reacting positively when you see an old friend. This would be pretty rigid. Now you might think that the reverse could be a good thing—getting stuck in a positive mood in the face of negative events, but this can be rigid too. Imagine you stay positive in the face of a slew of negative events during a really bad day (e.g., you get passed up for a promotion, you learn a friend is sick, you get in a fender-bender on the way home). This might buffer you from the effects of the negative events, but staying positive might also mean that you’re not appropriately reacting to those events or doing anything to change them. It might be more adaptive to get sad or angry when you get passed over for a promotion because it will make you try harder in the future. Consistent with this logic, a series of studies demonstrated that higher inertia, of both positive and negative emotions, has been associated with rumination and low self-esteem, but especially depression and the onset of depression in adolescents. Getting stuck, even in positive states, is not desirable.

But individual’s emotions don’t rise and fall in a vacuum. Most of the time, one’s emotions are ebbing and flowing because of interacting with someone else, whose emotions are also ebbing and flowing. Now add a third person. How can we measure that complexity?

My research group examines emotional flexibility among two or three interacting people by first viewing them as complex dynamic systems. Without getting too technical, the idea is that two people – let’s call them a “dyad” (as opposed to a monad or triad) – form a system of mutual influence on each other. The emotional patterns or “dynamics” of the interaction reveal the nature of that system. At a relatively simple level, we can characterize these dyadic systems as more or less flexible by measuring (1) the range of emotional states experienced; (2) the number of changes in emotional states experienced across time; and (3) the tendency to have short vs. long durations in emotional states. The image below shows the difference between a flexible mother-child dyad discussing a conflict they have at home and a rigid dyad doing the same thing.

Flexible gridrigid grid

Figure from Hollenstein, T. (2013). State Space Grids. New York: Springer.

These state space grids depict all possible emotional states of the mother (horizontal axis) and child (vertical axis) along 5 categories of different types of emotional experiences (e.g., a Hi Pos experience might be feeling excited whereas a Lo Pos experience might be feeling calm). This is simplified for the sake of illustration but can be done with any type of emotional experiences. Each box or cell of the grid represents one state; for example, the bottom left cell is for those moments when both mother and child are in highly negative states (e.g., angry, anxious). The dots and blue lines trace the sequence of those states across the interaction, and the size of the dot indicates how long they were in that particular state. Thus, you can see that the flexible dyad on the left has a greater range of states, (more cells occupied), makes more transitions (more lines), and has shorter durations (smaller dots) than the dyad on the right. The pattern for the flexible dyad on the left is like a movie, with the parent and child sharing and exchanging emotional expressions in fluid motions. The pattern for the rigid dyad on the right is like a series of still photographs, with the parent and child posing for a while and then shifting poses only occasionally. Using this technique, my colleagues and I have been able to show how:

 

Although it is not immediately intuitive, these studies indicate that these effects occur above and beyond emotional intensity or the emotions being experienced – inertia and rigidity in both positive and negative states is problematic. The take home message is clear: experiencing and expressing emotions in a flexible way is generally indicative of healthy functioning in day-to-day life.

Colloquially, it is common to use flexibility and rigidity when describing others. We praise people for going with the flow, chilling out, or rolling with the punches, but then denigrate the stick in the mud or someone stuck in a rut. Perhaps what we are picking up on is a person’s ability to move in and out of emotional states with relative ease. In addition to making sure to do your sun salutations or enough reps, it is just as important to stretch your emotional muscles.

 

Photo credit:http://www.psycholawlogy.com/wp-content/uploads/2013/06/flexible-emotions-Google-Search.png licensed via Creative Commons

 

We Are Not Born Alone

Tom Hollenstein

Relationships are good for us. For years, correlational study after correlational study has reported better health and mental health, longer life, less stress and negative emotions, and more happiness and positive emotions for those with good relationships compared to those with poor and/or few relationships.

As an example, consider an upcoming deadline at work that you worry you will not be able to meet, potentially resulting in dire consequences for your company and/or your job. Anxiety. Stress. The better you are able to manage that anxiety, the more likely you are to be able to focus and complete the task. If you are alone, both at home and at work, then the regulation of this stress is all on you. If you have good relationships both at work and at home, there are people to support you, encourage you, and help you feel less anxious.

How does this work?

The prevailing explanation is that relationships add benefits to individuals. Our default, or baseline, is as a solitary individual. This solitary baseline can then be enhanced by close relationships. Have one good relationship? That’s great. Have two? That’s even better. Have great relationships at home, work, and in the community? That’s the best. Let’s call this the Law of Added Positives: psychologically and biologically, good relationships provide extra positives to minimize individuals’ negatives.

However, according to Social Baseline Theory, based on evolution, neuroscience, and emotion advanced by James Coan and colleagues, the Law of Added Positives is not the way things work. In fact, they seem to work in reverse.

For millions of years, humans have been born into environments that included other people. Life begins with strong physical attachments to a mother that become5621007786_aa441a3deb_o strong emotional attachments to her and a group of (often related) others. Those that bonded and worked together for common solutions thrived; those that fought and worked against each other did not. An isolated individual was and remains an anomaly, someone unlikely to have the resources – resources that are as much psychological (e.g., emotional) and biological (e.g., neurological) as material. (e.g., food) – to survive and reproduce.

That is, our baseline or default circumstance is social.

Human biological systems evolved for – and now expect – a social environment where existential risk is distributed (i.e., safety in numbers) and survival efforts are shared. Fight the bear by yourself and you will expend a lot of energy and are less likely to survive; be one of a group fighting off the attacking bear, each individual using less energy with a greater likelihood that you survive. Less energy and greater chance of survival – that is what evolution is all about.

So how does this translate to modern day humans and the relationships-health connection? First consider some preliminary evidence provided by Proffitt and colleagues.

  1. Perception of effort is biased by energy cost/benefit. People perceive hills as steeper and distances as farther away when they are wearing a heavy backpack compared to when they are not. This is taken as evidence that neurobiological systems automatically adjust the perception of difficulty based on the energy required.
  2. Social proximity reduces perception of energy costs. If your friend is standing next to you with a heavy backpack, you will perceive the hill as less steep and the distance as not as far. Just being near someone else lightens the load.
  3. The closer the relationship, the greater the effect. It is not merely the presence of any other human being that indicates load sharing. Your best friend has a bigger effect on your perception of incline and distance than a new acquaintance.

So, if you’re facing that deadline at work alone, it may make the task seem more difficult and less possible.

Coan and colleagues developed Social Baseline Theory based on this and other evidence but tested it more directly, by looking at threat processing in the brain. They conducted a hand-holding fMRI study with three conditions: no hand holding, holding the hand of a stranger, and holding the hand of their partner. Participants received a mild ankle shock on 20% of trials in which they saw a threat cue on a screen. Threat-related brain activity was greatest in the alone condition, less in the stranger condition, and the least in the partner condition. Like the backpack studies, those with the least amount of threat-related brain activity had the highest quality relationships with their hand-holder. Other studies have shown this effect as well.

Instead of relationships adding some extra positives, as the Law of Added Positives would assume, those with the most load sharing were the most efficient at processing threat, requiring the least energy. As social connection and therefore load sharing, diminished, more energy for neural activation was required to deal with the threat. Maybe the law is one of Added Negatives.

Perhaps the greatest implication of Social Baseline Theory is the way that we conduct psychological, especially emotional, research. In an effort to minimize extraneous variables, much of what we have come to understand about human thoughts and feelings and behavior has come from experimental isolation – a single human alone in a room in front of a computer. The assumption has been that the individual is the fundamental unit of analysis and when we include other people it is to enhance or diminish whatever capacities were witnessed in isolation. Perhaps what we have revealed is human functioning at its least efficient, most taxing, and least natural.

Photo credit: https://flic.kr/p/9yH8Mm Shared via a Creative Commons license.